31.7.14

Una demostración

(Esta entrada ya había sido publicada en el blog en julio de 2013; se la vuelve publicar aquí "remozada".)

Vamos a demostrar a continuación que si p es un número primo que es divisor del producto ab entonces p es divisor de a o es divisor de b. La "originalidad" de esta demostración reside en el hecho de que se basa directamente en el principio del mínimo mientras que la demostración que habitualmente se encuentra en los libros usa el hecho de que si mcd(a,b) = 1 entonces existen s y t tales que as + bt = 1.

(Aunque casi nunca se lo mencione explícitamente, todos los números mencionados son enteros positivos.)

Teorema: Si p es un número primo positivo y $k,a,b\in \mathbb{N}$ son tales que pk = ab entonces p es divisor de a o p es divisor de b.

Demostración: Supongamos que la afirmación es falsa y sea p el menor primo para el cual existen $k,a,b\in \mathbb{N}$ con pk = ab sin que p sea divisor de a ni de b. De todos los valores posibles de k elegimos, a su vez, el menor posible. 

Afirmo que $a < p$ y que $b < p$. En efecto, supongamos que $p < a$ (no pueden se iguales porque p no es divisor de a). Dividimos a por p y obtenemos a = pq + r; como p y q son positivos entonces $r < a$ y además p no es divisor de r (porque no es divisor de a). 

Luego, ab = pqb + rb y en consecuencia p es divisor de rb, existe entonces un k' tal que pk' = rb. Observemos que $pk^\prime = rb < ab = pk$ y entonces $k^\prime < k$ con pk' = rb y además r y b no divisibles por p. Esto contradice la minimalidad de k. El absurdo proviene de suponer que $p < a$, deducimos entonces que $a < p$.

Tenemos entonces que pk = ab con $a < p$ y $b < p$. Nótese que $pk = ab < p^2$, luego $k < p$. Sea $p^\prime $ primo y $n\in \mathbb{N}$ tales que $p^\prime n = k$ (si k resultara ser primo, entonces tomamos $p^\prime =k$ y $n=1$). Luego, $pp^\prime n=ab$. Como $p^\prime \leq k < p$ entonces, por la minimalidad de p, $p^\prime $ es divisor de a o es divisor de b. Podemos suponer que $p^\prime $ es divisor de a, luego, existe t tal que $p^\prime t=a$. Tenemos que:

$pk = ab$
$pp^\prime n = p^\prime tb$
$pn = tb$

Como n es menor que k entonces, por la minimalidad de k, p es divisor de t (y entonces, divisor de a) o bien p es divisor de b. En ambos casos se llega a un absurdo. Esto finaliza la demostración.

Desafío para los lectores: ¿En qué punto de la demostración se usa la hipótesis de que p es primo?

28.7.14

Axiomas de Peano y consecuencias (4)

(Para ver todas las entradas de esta serie hágase clic en la etiqueta "Axiomas de Peano" en la columna derecha de este blog.)

Definición: 1 = S(0).

Teorema 10: $1\neq 0$.
(Es consecuencia inmediata del axioma 1.)

Teorema 11: n + 1 = S(n).
Demostración:
n + 1 = 
= n + S(0)  (definición)
= S(n + 0)  (Ax. 4)
= S(n)   (Ax. 3)

Teorema 12: 1.n = n.
Demostración:
Por inducción. Para n = 0 vale por el axioma 5. 
Veamos que 1.n = n implica 1.S(n) = S(n).
1.S(n) = 
= 1.n + 1  (Ax. 6)
= n  + 1  (por hipótesis)
= S(n)  (Teo. 11).

Definiciones:
2 = S(1)
3 = S(2)
4 = S(3)
5 = S(4)
etc.

26.7.14

Productoria

1) Si $(a_1,\dots ,a_n)$ es una n-upla de números reales, la productoria $\prod (a_1,\dots ,a_n)$ se define, inductivamente, de esta manera:

Para $n=0$, definimos $\prod ()=1$.
Supuesto definido $\prod (a_1,\dots ,a_n)$, definimos $\prod (a_1,\dots ,a_n,a_{n+1}) = a_{n+1}\cdot \prod (a_1,\dots ,a_n)$.

2) Definimos $b^n=\prod (b,\dots ,b)$, donde b aparece n veces; en particular $b^0=\prod ()=1$. Y más en particular $0^0=\prod ()=1$.

17.6.14

Dos problemas de probabilidad

Problema 1: Una bolsa contiene 17 bolillas, de ellas 8 tienen marcada una letra A y las otras 9, una letra B. De las que tienen la letra A, 6 son rojas y 2 son negras; de las que tienen la letra B, 4 son rojas y 5 son negras. Se extrae una bolilla al azar y se observa que es roja ¿cuál es la probabilidad de que tenga inscripta una letra A?

Problema 2: Tenemos 17 bolillas, de ellas 8 tienen marcada una letra A y las otras 9, una letra B. De las que tienen la letra A, 6 son rojas y 2 son negras; de las que tienen la letra B, 4 son rojas y 5 son negras. Las bolillas que tienen la letra A son colocadas en una bolsa, las que tienen la letra B son colocadas en una bolsa diferente. Luego, se elige al azar una de las dos bolsas y de ella se extrae al azar una bolilla. Se observa que la bolilla extraída es roja ¿cuál es la probabilidad de que tenga inscripta una letra A?

28.4.14

Una ruleta paradójica


Imaginemos una ruleta "continua" capaz de detenerse con precisión absoluta en cualquiera de los infinitos ángulos comprendidos entre 0° y 360°.
Imaginemos también que mientras la ruleta gira al azar el jugador A apuesta $10 a que la flecha se detendrá en un ángulo comprendido entre 0° y 120°. ¿Cuál sería un pago justo para la apuesta de A

Por pago justo entendemos un pago tal que si A repite su apuesta una y otra vez entonces, a la larga, ganará tanto dinero como el que perderá. Ahora bien, dado que el arco de la circunferencia comprendido entre 0° y 120° representa la tercera parte de la circunferencia total, es decir, dado que la medida de ese arco es un tercio de la medida de la circunferencia, entonces la probabilidad de que A gane es 1/3. En otras palabras, A ganará más o menos una de cada tres apuestas y entonces, para que el juego sea justo, A debería recibir $20 cada vez que gana.

Pero supongamos ahora que un jugador B apuesta $10 a que la flecha quedará apuntando hacia uno de los puntos del conjunto V definido en la entrada anterior, ¿cuál sería en este caso un pago justo? Sucede que V es no medible, no tiene medida, por lo que la probabilidad de que la flecha quede apuntando hacia un punto de V no existe. En consecuencia, no hay pago justo para la apuesta de B. No importa cuánto decida la banca que debe pagar por esa apuesta, alguno de los dos (B o la banca), a la larga, perderá dinero, no hay modo en que queden "iguales".

Esta entrada participa en la Edición 5.3: Felix Klein del Carnaval de Matemáticas cuyo anfitrión es Juegos Topológicos.

27.4.14

Comentario a "...la falacia del jugador"

Esta entrada es un comentario a los comentarios escritos en "Una respuesta a la falacia del jugador".

La falacia del jugador es la creencia de que, por ejemplo, si sale negro varias veces seguidas en la ruleta entonces la probabilidad de rojo va aumentando cada vez para "compensar" (ya que, a la larga, deberá haber la misma cantidad de rojos que de negros). Esta idea es falsa (de ahí que se lo llame "falacia"), ahora bien la pregunta es: ¿cómo demostrarle a alguien que sostiene esa creencia que lo que cree y dice es falso?

Hay dos opciones, una es la que se propone en los comentarios a aquella entrada, que consiste simplemente en decirle al otro que su creencia es falsa e indicarle cuál es la idea correcta. En resumen, se le dice: "tú estás equivocado porque los libros dicen que la verdad es otra". Un argumento de autoridad, digamos.

Pero hay otra alternativa, que es la que yo propuse en la entrada (cuya intención parece que no fue comprendida por los comentaristas), y que consiste en decir: "Tu creencia falsa porque, de hecho, es autocontradictoria". La intención en este caso no es decir "mi lógica es superior a la tuya", sino penetrar en la lógica del otro, comprenderla y poner a la vista sus errores internos. En resumen, lo que la entrada muestra es que si se sostiene la creencia de que "si sale negro varias veces seguidas en la ruleta entonces la probabilidad de rojo va aumentando porque deben compensarse", a partir de esa misma premisa también se concluye que la probabilidad de rojo no cambia, es decir, se deduce que esa probabilidad al mismo tiempo sigue siendo siempre la misma; en conclusión, la premisa es autocontradictoria y por ende, falsa.

26.4.14

La duplicación de la circunferencia

El famoso teorema de Banach-Tarski dice que es posible cortar una esfera en una cantidad finita de partes, las cuales, convenientemente reordenadas (y sin que sean deformadas de ninguna manera), permiten armar dos esferas iguales a la original.

Mi intención en esta entrada es mostrar un resultado parecido al teorema de Banach-Tarski; un resultado que, aunque menos espectacular, es tan paradójico como él. En esta entrada voy a mostrar cómo se puede cortar una circunferencia en una cantidad infinita numerable de partes que, convenientemente reordenadas, permiten armar dos circunferencias iguales a la original (de hecho, podría armarse una cantidad infinita numerable de circunferencias iguales a la original).

Obviamente, el aspecto paradójico del teorema de Banach-Tarski consiste en que nuestra intuición nos dice que si cortamos un cuerpo en una cantidad finita de partes y las reordenamos entonces el volumen total debería conservarse. El aspecto paradójico del resultado que aquí mostraré es similar ya que, quizás no nuestra intuición, pero sí los axiomas de la medida nos dicen que la longitud debería igualmente conservarse si una curva es cortada en una cantidad numerable de partes y estas son reordenadas.

Sea C entonces una circunferencia; vamos a comenzar definiendo en ella una relación de equivalencia. Para ello, para cada número racional q con $0\leq q < 1$ consideramos el movimiento que consiste en girar todos los puntos de C un ángulo de q.360° en sentido contrario al de las agujas del reloj. A todos los movimientos así definidos los llamaremos giros válidos.
Definimos entonces la siguiente relación: dos puntos P y Q de C están relacionados si y sólo si es posible llegar de P a Q mediante un giro válido. No es difícil probar que se trata, en efecto, de una relación de equivalencia.

Llamemos V a un sistema de representantes de la relación, es decir, V contiene exactamente un punto de cada una de las clases de equivalencia determinadas por la relación definida más arriba. Una consecuencia de esta definición es que cada punto P de la circunferencia C existe un único punto Q de V tal que se puede llegar de Q a P mediante un giro válido; y ese giro también es único.

A continuación, para cada número racional q con $0\leq q < 1$ llamamos Vq al conjunto que se obtiene aplicando simultáneamente a todos los puntos de V el giro válido de q.360°. Por ejemplo V1/3 se obtiene girando los puntos de V 120° en sentido antihorario (nótese que V0 = V). De lo dicho más arriba se deduce, por un lado, que C es la unión de todos los Vq y, por el otro, que no hay puntos que pertenezcan simultáneamente a dos Vq diferentes.

Dado que el conjunto de todos los números racionales es numerable, entonces la circunferencia C ha quedado partida en una cantidad igualmente numerable de partes Vq disjuntas dos a dos. Tenemos así definidas, entonces, cuáles son las partes en que la circunferencia es cortada, veamos ahora cómo reordenarlas para completar la duplicación.

Para comenzar con la duplicación, notemos en primer lugar que dos cualesquiera de las partes en que hemos cortado a C pueden obtenerse, una de la otra, mediante un giro válido. Por ejemplo, V1/2 resulta de girar 60° a V1/3. Separamos entonces las partes que hemos definido y, aprovechando el hecho de que los racionales son numerables, las numeramos 1, 2, 3, 4,… (la imagen se sale de marco porque sigue infinitamente hacia la derecha).
A continuación separamos las partes, colocando por un lado las partes “pares” y por el otro las “impares”.
Finalmente aplicamos, tanto en la fila superior como en la inferior de la imagen, un “corrimiento” al estilo hotel de Hilbert. Con más precisión, en la fila superior de la imagen giramos la parte número 3 de modo que ocupe el lugar de la parte 2 (es decir, rotamos V1/3 para transformarla en V1/2), al mismo tiempo rotamos la parte 5 para que ocupe el lugar de la 3, y así sucesivamente hasta “llenar todos los espacios en blanco”. El resultado final es una copia de la circunferencia C. Luego repetimos el mismo proceso en la fila inferior; giramos la parte número 2 para que ocupe el lugar de la 1, la 4 para que ocupe el lugar de la 2, y así sucesivamente. Logramos así construir una segunda copia de la circunferencia C, la cual, en consecuencia hemos duplicado.

No es difícil modificar la idea (véase aquí) de tal modo que se pueda obtener una cantidad infinita numerable de copias de la circunferencia C. Y con mínimas variantes puede aplicarse también para lograr la multiplicación de un círculo al que le falte su centro (para esto último, a cada punto de conjunto V le adjuntamos el radio que lo une con el centro del círculo, aunque sin incluir al centro en sí mismo).

De modo que, si así lo desean, pueden multiplicar hasta el infinito, sin costo de material, toda su colección de discos compactos… aunque, claro, tal vez la música registrada en ellos quede un poco alterada.

Esta entrada participa en la Edición 5.3: Felix Klein del Carnaval de Matemáticas cuyo anfitrión es Juegos Topológicos.

15.1.14

Axiomas de Peano y consecuencias (3)

(Para ver todas las entradas de esta serie hágase clic en la etiqueta "Axiomas de Peano" en la columna derecha de este blog.)

Teorema 8: n.(m + k) = n.m + n.k.
(Es decir, vale la propiedad distributiva).
Demostración:
Fijamos n y m, y hacemos inducción en k. Para k = 0 vale por los axiomas 3 y 5.
Tenemos que probar que n.(m + k) = n.m + n.k implica n.(m + S(k)) = n.m + n.S(k). Veámoslo:
n.m + n.S(k) =
= n.m + (n.k + n)     (ax. 6)
= (n.m + n.k) + n     (teo. 4)
= n.(m + k) + n     (hipótesis)
= n.S(m + k)     (ax. 6)
= n.(m + S(k))    (ax. 4)

Teorema 9: (n.m).k = n.(m.k).
(Es decir, el producto es asociativo).
Demostración:
Fijamos n y m, y hacemos inducción en k. Para k = 0 vale por el axioma 5.
Tenemos que probar que si (n.m).k = n.(m.k). entonces (n.m).S(k) = n.(m.S(k)).
Veámoslo:
(n.m).S(k) =
= (n.m).k + n.m     (ax.6)
= n.(m.k) + n.m     (hipótesis)
= n.(m.k + m)     (teo. 8)
= n.(m.S(k))     (ax. 6).

10.1.14

Axiomas de Peano y consecuencias (2)

(Para ver todas las entradas de esta serie hágase clic en la etiqueta "Axiomas de Peano" en la columna derecha de este blog.)

Teorema 4: (n + m) + k = n + (m + k)
(Es decir, la suma es asociativa).
Demostración:
Fijamos n y m, y hacemos inducción en k.
Para k = 0 vale ya que:
(n + m) + 0 = n + m = n + (m + 0).
Tenemos que probar que (n + m) + k = n + (m + k) implica (n + m) + S(k) = n + (m + S(k)). Veamos que es así:
(n + m) + S(k) =
= S((n + m) + k)     (ax. 4)
= S(n + (m + k))     (hipótesis)
= n + S(m + k)     (ax. 4)
= n + (m + S(k))    (ax. 4).

Teorema 5: 0.n = 0
(Recuérdese que el axioma 5 afirma que n.0 = 0).
Demostración:
Hacemos inducción en n. Para n = 0 vale por el axioma 5. Tenemos que probar que 0.n = 0 implica 0.S(n) = 0. Veámoslo: 0.S(n) = 0.n + 0 = 0 + 0 = 0.

Teorema 6: S(n).m = n.m + m
Demostración:
Fijamos n y hacemos inducción en m. Para m = 0 vale porque: S(n).0 = 0 = 0 + 0 = n.0 + 0.
Tenemos que probar que S(n).m = n.m + m implica S(n).S(m) = n.S(m) + S(m). Veámoslo:
S(n).S(m) =
= S(n).m + S(n)     (por el ax. 6)
= (n.m + m) + S(n)     (hipótesis)
= n.m + (m + S(m))     (teo. 4)
= n.m + (S(m) + n)     (teo. 2)
= n.m + (n + S(m))     (teo. 3)
= (n.m + n) + S(m)     (teo. 4)
= n.S(m) + S(m)     (ax. 6)

Teorema 7: n.m = m.n (el producto es conmutativo).
Demostración:
Fijamos n y hacemos inducción en m. Para m = 0 vale porque n.0 = 0 = 0.n.
Tenemos que probar que n.m = m.n implica n.S(m) = S(m).n. Veámoslo:
n.S(m) =
= n.m + n     (ax. 6)
= m.n + n     (hipótesis)
= S(m).n     (teo. 6).

6.1.14

Axiomas de Peano y consecuencias (1)

(Para ver todas las entradas de esta serie hágase clic en la etiqueta "Axiomas de Peano" en la columna derecha de este blog.)

La intención de esta serie de entradas es simplemente explorar cómo, a partir de los Axiomas de Peano, pueden probarse las propiedades básicas de los números naturales.

Los axiomas de Peano
Estos axiomas se refieren a ciertos objetos a los que llamaremos números naturales y tienen como elementos primitivos al número 0, que es un número natural, a la función sucesor, que indicamos con la letra S, y a las operaciones de suma y producto. Los axiomas son:

Axioma 0: El sucesor de un número natural es siempre un número natural, la suma y el producto de dos números naturales es siempre un número natural.
Axioma 1: Para todo n, $S(n)\neq 0$.
Axioma 2: Si S(n) = S(m) entonces n = m.
Axioma 3: n + 0 = n.
Axioma 4: n + S(m) = S(n + m).
Axioma 5: n.0 = 0.
Axioma 6: n.S(m) = n.m + n.
Axioma 7 (Esquema de inducción): Para cada fórmula P(n), si puede probarse que vale P(0) y también que vale "P(n) $\Rightarrow $ P(S(n))" entonces P(n) vale para todo n.

Teoremas:
Estos son algunos teoremas que se deducen de los axiomas de Peano.

Teorema 1: 0 + n = n.
Demostración:   
Aplicamos el esquema de inducción.
Para n = 0 la afirmación vale por el axioma 3.
Tenemos que probar que "0 + n = n $\Rightarrow $ 0 + S(n) = S(n)". Veamos que es así:
Si 0 + n = n entonces 0 + S(n) = S(0 + n) = S(n).

Teorema 2: n + S(m) = m + S(n).
Demostración: 
Hacemos inducción en m.
Para m = 0 la afirmación vale porque:
n + S(0) = S(n + 0) = S(n) = 0 + S(n), esto último por el teorema 1.
Veamos que n + S(m) = m + S(n) implica n + S(S(m)) = S(m) + S(n).
S(m) + S(n) =
= S(m + S(n))     (ax. 4)
= S(n + S(m))     (hipótesis)
= n + S(S(m))     (ax. 4).

Teorema 3: n + m = m + n
(Es decir, la suma es conmutativa).
Demostración:
Fijamos n y hacemos inducción en m.
Para m = 0 vale ya que n + 0 = n = 0 + n, por axioma 3 y teorema 1.
Tenemos que probar que n + m = m + n implica n + S(m) = S(m) + n, veamos que es así:
n + S(m) =
= S(n + m)     (ax. 4)
= S(m + n)     (hipótesis)
= m + S(n)     (ax. 4)
= S(m) + n     (teo. 2).

13.12.13

Crucigrama numérico

Espero que en éste no haya errores...


Hay que escribir una cifra en cada casilla, no deben quedar casillas vacías, ningún número comienza con cero.

Horizontales:
1) Múltiplo de 106.
4) El producto de sus cifras es 51.
6) El producto de sus cifras es igual al producto de las cifras de 2 vertical.
10) Múltiplo de 304.

Verticales:
1) Número primo, dos de cuyas cifras son pares e iguales.
2) Cuatro cifras diferentes.
3) Número par formado por cuatro cifras consecutivas, todas distintas de cero, y ordenadas en forma decreciente.
5) Tres cifras diferentes, pero con la misma paridad, que suman 12.

Actualización: Claudio Meller y Mariana Belén encontraron "la clave" para resolverlo.
Actualización: Pablo Rowies encontró que el problema tenía 9 soluciones (!). Lo he corregido para que la solución sea única (las correcciones están en azul). Gracias, Pablo.

11.12.13

Problemita de lógica (4)

En los comentarios al problema anterior Marcos Donnantuoni se pregunta si la solución de aquél problema es única. Esa pregunta, a su vez, me inspira este nuevo problema.

Para cada afirmación indicar si es verdadera o falsa:
1) La siguiente afirmación es falsa.
2) El problema tiene solución única.