19.8.10

El Omegón y todo eso... (Parte 14)

(A la parte 13A la parte 15)

Los ordinales, hoy (continuación)

Queremos recuperar en el contexto de la teoría de Morse-Kelley la construcción de los ordinales de Cantor, y además hacerlo de tal modo que se eviten las paradojas. La idea básica es que, mientras Cantor concebía a los ordinales como números que permitían contar "más allá del infinito", la teoría de Morse-Kelley concibe a los ordinales como conjuntos, y la relación "menor que" de Cantor se reemplaza por la relación "pertenece a". Veamos cómo se hace esto:

Como dijimos en la parte anterior, en la teoría de conjuntos de Morse-Kelley el número 0 se identifica con la clase vacía. Los axiomas de la teoría permiten probar que 0 es, de hecho, un conjunto. Por lo tanto podemos decir que 0 es el conjunto vacío. Además, 0 es el primer ordinal.

El ordinal siguiente al 0 es el 1, que se define como

1 = {0}

Puede probarse que 1 es un conjunto, el conjunto cuyo único elemento es el 0. Por lo tanto 0 pertenece a 1. Observemos también que 0 es un subconjunto de 1.

Los ordinales finitos siguientes 2, 3, 4, 5, 6,... son también todos conjuntos y se definen como:

2 = {0, 1}
3 = {0, 1, 2}
4 = {0, 1, 2, 3}
5 = {0, 1, 2, 3, 4}
6 = {0, 1, 2, 3, 4, 5}

Y así para todos los ordinales finitos. Notemos que 1 pertenece a 2 (y también pertenece a 3, 4, 5,...). También 1 = {0} es un subconjunto de 2, 3, 4, 5,...
El ordinal 2 pertenece y es subconjunto de 3, 4, 5, 6,...
El ordinal 3 pertenece y es subconjunto de 4, 5, 6, 7,...

Y así sucesivamente.
Observemos también que:

El sucesor de 0 es $0\cup \{ 0\} $ = {0} = 1.
El sucesor de 1 es $1\cup \{ 1\} $ = $\{ 0\}\cup \{ 1\}$ = {0, 1} = 2.
El sucesor de 2 es $2\cup \{ 2\} $ = $\{ 0,1\}\cup \{ 2\}$ = {0, 1, 2} = 3.
Etc.

El primer ordinal infinito, $\omega $, se define como la clase (puede probarse que, de hecho, es un conjunto) cuyos elementos son todos los ordinales finitos:

$\omega $ = {0, 1, 2, 3, 4,...}

Su sucesor es $\omega +1$ = $\omega \cup \{ \omega \} $ = {0, 1, 2, 3, 4,..., $\omega $}, donde los puntos suspensivos abarcan todos los números naturales desde 5 en adelante. Todos los ordinales finitos son elementos y subconjuntos de $\omega $, que a su vez es elemento y subconjunto de $\omega +1$.

Recordemos que una de las reglas de construcción de ordinales establecida por Cantor nos decía que a continuación de una secuencia creciente de ordinales consecutivos se "hacía aparecer" un nuevo ordinal. En la teoría de conjuntos ese nuevo ordinal es la clase cuyos elementos son todos los ordinales anteriores.

Pero ¿cómo se define el concepto de ordinal? Para comenzar definimos la noción de clase completa.

Definición: una clase x es completa si todo elemento de x es también un subconjunto de x.

Para entender esta definición debemos recordar primero que en esta teoría todos los objetos considerados son clases y que no existe la distinción habitual entre elementos individuales y clases (o conjuntos).

En segundo lugar observemos que si x = {1}, entonces 1 es elemento de x, pero 1 no es subconjunto de x, porque 1 = {0} y 0 no es elemento de x. Por lo tanto {1} no es completo. Todos los ordinales mostrados más arriba, en cambio, sí son completos.

Definición: una ordinal es una clase completa que está bien ordenada por la relación de pertenencia.

Es decir, si x es un ordinal y consideramos la relación de pertenencia, definida entre los elementos de x, entonces x resulta ser bien ordenado por esa relación. Veamos cómo esta definición nos permite ir obteniendo, uno tras otro, los sucesivos ordinales 0, 1, 2, 3,...:

Supongamos que x es un ordinal. Si x es 0 entonces está al comienzo de la secuencia. Veamos que si no es 0 entonces es mayor o igual que 1 (es decir, o es igual a 1 o el 1 es elemento de x, recordemos que aquí "menor" equivale a "pertenece").

Supongamos que x es no vacío, como es bien ordenado por la relación de pertenencia entonces tiene un mínimo. Sea y esa mínimo. Como x es completo e y es un elemento de x entonces y es un subconjunto de x.

Supongamos que y fuera no vacío, existiría en consecuencia algún z tal que z pertenece a y.

Entonces: z pertenece a x (porque pertenece a y, que es subconjunto de x), pero también pertenece a y, es decir "es menor que y", pero y el mínimo de x (no puede haber elementos menores que él). Esto es un absurdo, luego z no puede existir. Es decir, y = 0.

En resumen, si x es un ordinal no vacío entonces 0 pertenece a x. En otras palabras, x es mayor que 0 y {0} = 1 es un subconjunto de x.

Ahora bien, x podría ser el 1, o no. Si x es 1, entonces sigue al 0 en la secuencia de ordinales.

Si x no es 1 tomamos el mínimo de x - {0} y un razonamiento similar al anterior nos permitirá probar que, en ese caso, si x es mayor o igual que 2. Ahora bien, si x no es 2, un razonamiento similar nos permitirá probar que es mayor o igual que 3. Etc.

En la próxima parte veremos cómo esta definición conjuntista de los ordinales nos permite evitar la paradoja de Burali-Forti.

No hay comentarios.: